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The first stable disilynes, RSIiSIR, R Si(CH(SiM&)y),(i-Pr)t 5
(1) and R= SiMe(Sit-Bug),? were recently synthesized after years
of frustrating attemptsl was characterized by X-ray crystallo- 1

)
graphy! 1 is trans-bentq = 137.4) with r(Sit—Sit) = 2.062 A, 2 e
significantly shorter than in RSE=SIRR (e.g., 2.15 A for R= 5,.(5") L
SiMe;, R = 2,_4,6.-tr||sopropylphen§7}. This |s_|n line with ear!ler - .alwg,.,} ®)
theoretical (E= Si—Pb) and experimental (& Ge—Pb} studies W il L
showing that REER are trans-bent, in contrast to the linear geometry (a)
of acetylenesl was assigned a SiSi triple bond on the basis of L . . T P PR e S 2
its structure, its UV~vis spectrum, and the calculated-S8i* bond . ..
order of 2.6 Figure 1. (a) CPMAS 2°Si MNR spectrum of1; (b) and (c) show
e simulations of the stati€’Si NMR spectrum ofl using (b) the experimental
/CH(SipMe3)2 . /"\ SiMe, datd?c and (c) the calculated ¢&ymmetry) CST components.
A= a:l1
o rﬁ‘,sf‘”" Me;Si/SI :s| Table 1. Measured Solid-State 2°Si NMR Parameters of 1 and
(MesSTIHG  sit=si' CH(SIPMe,), Calculated Values for 1—3
-Pr— siZ 4 Me;Si— Si'=si'- SiMe; 57t values (i
(MeSP)HC 3 it values (in ppm)
) ) O (0m1) 022 (02) 03(03) Oiso” (0iso) CSA?
Are the trans-bent £E bonds in REER triple bonds? The answer 1
to this fundamental question is highly controversial and under & exptl 364+ 20° 221+ 16 —350+ 13 78.4 —643+ 20
; ; i Bab.6-8 ; 89.9
vigorous discussioP??68 The recent synthesis df has only caled-h
intensified the debate rather than settlin§it:8 dtotal (C) 373.1 2444  —431.9 61.9 —740.6
Experimental information on the nature of a chemical bond can 0 total (G)'  381.6 2495 ~ —435.2 653  —750.7
: . . o oPl —964.9 837.4 141.7 648.0) (759.5
be obtained from solid-state NMR by measuring the directional ( ) € ) b) . Ek ) € ) )
NMR chemical shift tensors (QST) and the chemical shift anisotropy 5 {otal 442 4 285.2 en 9271_2 85.5 -835.1
(CSAY).1° Large CSA values indicate the presencerehonds!® ob (—999.1) (843.6) (-87.9) (-643.6) (833.5)
Thus,13C CSA values for H&CH, H,C=CH,, and HCCH; are 3, linear Osg)
_24010ab_15310a i o total 162.5 162.5 —-518.5 —64.5 —681.0
240 153102and 15 (calculated) ppm, respectively. The large op (C7194) (7194) (427) (493.9) (676.7)

CSA of HG=CH results from two strongly deshielded CST com-
ponents directed perpendicularly to its molecular axis (Schem® 1a). a5 = (01, + 022 + 039)/3. ® Reference 9¢ Reference 121 dso(2°S2)
Measured CST and CSA of compounds witk§i 112 Si=Si 11 = 18 ppm, dio**S¥) = 0.4, 0.3,-0.4, and—1.0 ppm-°In dybenzene
and Sr=Sntlc bonds revealed large CSA values, consistent with 52%'“.“0”- O(*°Si) = o (*°Sirms) — 0 (°Si); TMS = Me,S, calculateds
) . (*Sirms) = 331 ppm.9 Reference 14€! Geometries are given in ref 15.

the existence ofr-bonds. Note that the absolute size of the CSA i total) = §(2°Sirus) — [oi(paramagnetic)+ ai(diamagnetic)]i Ci.
value does not reflect the-bond strengtild k Geometries are given in the Supporting Information.

Here we report the first solid-staf8Si NMR spectrum of a
disilyne, that is,1, as well as quantum mechanical calculations

which provide the size and orientation of the CSTlaind of the

Scheme 1. Calculated Orientation of the Principal CST
Components: (a) in Linear REER; (b) in Bent RSiSiR6

smaller models2 and3. On the basis of the size and direction of @ XN, (b) 1P/ o2
the CST components and the laRjgi CSA values, we conclude R\’g&
that1 (and other bent disilynes) possesses a triple bond, although R—E=E—R —% 833 Si= iw
with weakenedrz-bond$? and a smaller bond order (216 than )Y/ E=C, Si / R 833
that of the classic triple bond in acetylene (3.0). 341 Y &84
The solid-staté®Si NMR measurements were carried ‘Buising _ ) _ ) ) _
the CPMAS techniqu& Experimental and calculattddata are The observed isotropio(*Si') of 1 in the solid state is 78.4
given in Figure 1 and Table 1. The tensor directions are shown in PPM. shifted by 11 ppm to a higher field relative to that in benzene
Scheme 1. solution (89.9 ppr). This difference may result from small confor-

mational changes in solution relative to that in the solid state, for
* University of Tsukuba. ot Qi :
# University of Wisconsin, example, twisting of the RSIiSIiR skeleton or rotation about th&R
§ Technion-Israel Institute of Technology. bond?®
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Figure 2. Frontier molecular orbitals of trans-bent BSESIiSiMe; (in
parentheses, their relative energies in eV, at B3LYP/6-31G(d,p)).

The measured CSA of Sin 1 of —643 ppm (calculated:=740
to —764 ppm, Table 1) is considerably larger than in disilenes (e.g.,
—364 ppm for PrSi),Si=Si(Si--Prs),!19).11d The measured,;
and 0, (Scheme 18§ are 364 and 221 ppm, respectively,
considerably deshielded relative dgs of —350 ppm.

The measured CSTs df (which are generally in reasonable
agreement with the calculated values) provide strong evidence for
its Si—Si triple bond character. To understand this statement, let
us first analyze the CSTs of model systeBn@near) and? (trans-
bent) realizing that the measured and calculated CSIectibits
a very similar behavior to that calculated &1(Table 1).

In linear3, 011 (011) andoy, (02) are identical, and are oriented
perpendicularly to the RSISIR molecular axig),(that is, along
the X andY axes (Scheme lays; (033) points along theZ axis,
and it is shifted to a higher field (Table 1)*C NMR of HCCH
exhibits the same tensor pattern, thavig,= d,, = 150 ppm,ds3
= —90 ppm?011dThe paramagnetic contributionPj172bto the CST
of Sitin 3 is highly anisotropic (CSA= 677 ppm) with high degen-
erate deshielding contributions aloX@ndY (oP;; = 0P, = —719
ppm) and a very small contribution alory(oPs3 = —43 ppm)
(Table 1).0P1; and 0Py, in linear disilynes (and acetyleri€sare
attributed primarily>18to the coupling, induced by the applied mag-
netic field, betweew(Si—Si) and the two degenerat&-orbitals,
which in linear structures are oriented in perpendicular planes.

Upon bending oB — 2, the degeneracy of the andsr*-orbitals
is lifted, forming twosr-orbitals, sy, andsroy: (@ndsr* iy, 77* oug) (Figure
2), leading consequently to differemt;; andoP,, CST components
(Table 1), which are attributed primarily to the-S$i o—n*, and
o—a* ot Orbital coupling, respectivelf-18 o is inversely propor-
tional to the energy difference between the interacting orbitals
(AE),*’c the smaller isAE the larger is the shift obP to lower
field. Upon bendingAE(o—x*in) andAE(o—* o) decrease from
6.1eVin3to 4.5 and 5.6 eV, respectively, l(Figure 2), causing
a significant downfield shift of/*1; and oP,; and consequently of
011 anddy; (Table 1).014, oriented perpendicularly to the RSISIR
XZmolecular plane has the largest paramagnetic contribution (most
downfield shifted).ofs33 (—88 ppm) andds; (—471 ppm) remain
highly shielded, as i and in acetylené®

In conclusion, the measured and calculated orientations and
values of the CST components of bent disilyhstrongly support
the description of the SiSi bond as a triple bond composed of a
o-bond and two nondegeneratebonds
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